Blocking glutamate-mediated inferior olivary signals abolishes expression of conditioned eyeblinks but does not prevent their acquisition.
نویسندگان
چکیده
The inferior olive (IO) is considered a crucial component of the eyeblink conditioning network. The cerebellar learning hypothesis proposes that the IO provides the cerebellum with a teaching signal that is required for the acquisition and maintenance of conditioned eyeblinks. Supporting this concept, previous experiments showed that lesions or inactivation of the IO blocked CR acquisition. However, these studies were not conclusive. The drawback of the methods used by those studies is that they not only blocked task-related signals, but also completely shut down the spontaneous activity within the IO, which affects the rest of the eyeblink circuits in a nonspecific manner. We hypothesized that more selective blocking of task-related IO signals could be achieved by using injections of glutamate antagonists, which reduce, but do not eliminate, the spontaneous activity in the IO. We expected that if glutamate-mediated IO signals are required for learning, then blocking these signals during training sessions should prevent conditioned response (CR) acquisition. To test this prediction, rabbits were trained to acquire conditioned eyeblinks to a mild vibrissal airpuff as the conditioned stimulus while injections of the glutamate antagonist γ-d-glutamylglycine were administered to the IO. Remarkably, even though this treatment suppressed CRs during training sessions, the postacquisition retention test revealed that CR acquisition had not been abolished. The ability to acquire CRs with IO unconditioned stimulus signals that were blocked or severely suppressed suggests that mechanisms responsible for CR acquisition are extremely resilient and probably less dependent on IO-task-related signals than previously thought.
منابع مشابه
Assessing the role of inferior olivary sensory signaling in the expression of 1 conditioned eyeblinks using a combined glutamate / GABA - A receptor antagonist 2 protocol 3 4 5
Assessing the role of inferior olivary sensory signaling in the expression of 1 conditioned eyeblinks using a combined glutamate/GABA-A receptor antagonist 2 protocol 3 4 5 6 7 8 9 Svitlana Zbarska, Vlastislav Bracha 10 Biomedical Science Department, Iowa State University, Ames, IA, 50011 11 12 13 The inferior olive (IO) is a major component of the eyeblink conditioning neural 14 network. The c...
متن کاملAssessing the role of inferior olivary sensory signaling in the expression of conditioned eyeblinks using a combined glutamate/GABAA receptor antagonist protocol.
The inferior olive (IO) is a major component of the eyeblink conditioning neural network. The cerebellar learning hypothesis assumes that the IO supplies the cerebellum with a "teaching" unconditioned stimulus input required for the acquisition of the conditioned response (CR) and predicts that inactivating this input leads to the extinction of CRs. Previous tests of this prediction attempted t...
متن کاملThe role of glutamatergic inferior olivary teaching signals in the acquisition of conditioned eyeblinks
متن کامل
Glutamate neurotransmission in the cerebellar interposed nuclei: involvement in classically conditioned eyeblinks and neuronal activity.
The cerebellar interposed nuclei (IN) are critical components of a neural network that controls the expression of classically conditioned eyeblinks. The IN receive 2 major inputs: the massive, gamma-aminobutyric acid (GABA)-mediated input from the Purkinje cells of the cerebellar cortex and the relatively weaker, glutamate-mediated input from collaterals of mossy and climbing fiber cerebellar a...
متن کاملChanges in complex spike activity during classical conditioning
The cerebellar cortex is necessary for adaptively timed conditioned responses (CRs) in eyeblink conditioning. During conditioning, Purkinje cells acquire pause responses or "Purkinje cell CRs" to the conditioned stimuli (CS), resulting in disinhibition of the cerebellar nuclei (CN), allowing them to activate motor nuclei that control eyeblinks. This disinhibition also causes inhibition of the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 21 شماره
صفحات -
تاریخ انتشار 2013